Lesson 24. Double Integrals in Polar Coordinates

1 Review

1.1 Polar coordinates

- Polar coordinate system: specify points in the $x y$-plane as (r, θ) where
- $r=$
- $\theta=$

Example 1. Sketch the region in the plane consisting of points whose polar coordinates satsify: $1 \leq r \leq 3$, $\pi / 6 \leq \theta \leq 5 \pi / 6$.

1.2 Correspondence between polar and Cartesian coordinates

- $x=$

- $y=$

$$
\bullet
$$

Example 2. Find a polar equation for the curve represented by the Cartesian equation $y^{2}=2 x-x^{2}$.

2 Changing to polar coordinates in a double integral

- Idea:
- Some regions are hard to express in terms of Cartesian coordinates, but easily described using polar coordinates

$$
R=\{(r, \theta) \mid 1 \leqslant r \leqslant 2,0 \leqslant \theta \leqslant \pi\}
$$

- How do we integrate in polar coordinates? Divide regions into polar subrectangles

Cartesian coordinates

- If D is a polar region of the form

$$
D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

then

Polar coordinates

- Substitute $x=r \cos \theta$ and $y=r \sin \theta$ into $f(x, y)$
- Replace $d A$ with $\underline{r d r d \theta}$

- Don't forget the additional factor r !

Example 3. Evaluate $\iint_{D} \sin \left(x^{2}+y^{2}\right) d A$, where D is the region bounded by the circle $x^{2}+y^{2}=4$ and the line $y=0$.

Example 4. Evaluate $\iint_{D}\left(x^{2}+y^{2}\right) d A$, where D is the region in the first quadrant bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ and the lines $x=0$ and $y=x$.

Example 5. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} e^{-x^{2}-y^{2}} d y d x$ by converting to polar coordinates.

Example 6. Find the volume of the solid bounded by the plane $z=0$ and the paraboloid $z=1-x^{2}-y^{2}$.

