Lesson 24. Double Integrals in Polar Coordinates

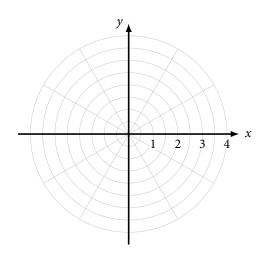
1 Review

1.1 Polar coordinates

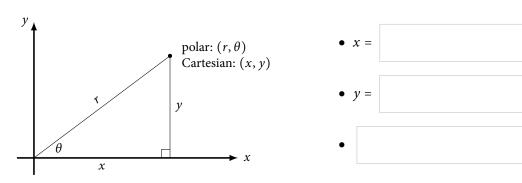
• **Polar coordinate system**: specify points in the xy-plane as (r, θ) where

$$\circ r =$$
 $\circ \theta =$

Example 1. Sketch the region in the plane consisting of points whose polar coordinates satisfy: $1 \le r \le 3$, $\pi/6 \le \theta \le 5\pi/6$.



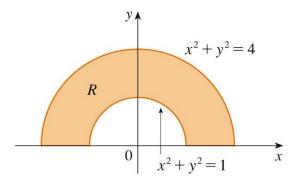
1.2 Correspondence between polar and Cartesian coordinates



Example 2. Find a polar equation for the curve represented by the Cartesian equation $y^2 = 2x - x^2$.

2 Changing to polar coordinates in a double integral

- Idea:
 - Some regions are hard to express in terms of Cartesian coordinates, but easily described using polar coordinates

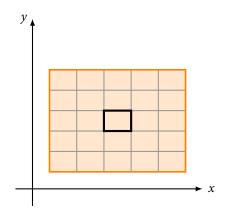


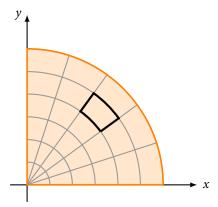
$$R = \{ (r, \theta) \mid 1 \le r \le 2, 0 \le \theta \le \pi \}$$

 $\circ~$ How do we integrate in polar coordinates? Divide regions into ${\bf polar~subrectangles}$

Cartesian coordinates

Polar coordinates

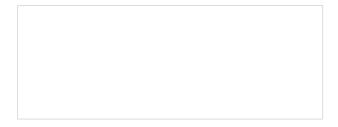


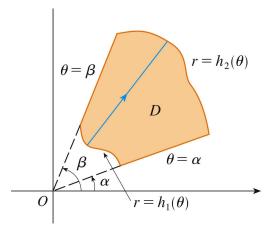


 • If D is a polar region of the form

$$D = \{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_1(\theta) \leq r \leq h_2(\theta)\}$$

then





- Substitute $x = r \cos \theta$ and $y = r \sin \theta$ into f(x, y)
- Replace dA with $r dr d\theta$
- Don't forget the additional factor r!

= 0.						
	$JJD(\cdots, f)$	and $y = x$.	8	1	ded by the circles <i>x</i>	. ,
$1x^2 + y^2 = 4a$	and the lines $x = 0$					
$x^2 + y^2 = 4a$	and the lines $x = 0$					
$x^2 + y^2 = 4$	and the lines $x = 0$					
$x^2 + y^2 = 4$	and the lines $x = 0$					
$x^2 + y^2 = 4a$	and the lines $x = 0$					
$1x^2 + y^2 = 4x$	and the lines $x = 0$					
$1x^2 + y^2 = 4a$	and the lines $x = 0$					
$x^2 + y^2 = 4a$	and the lines $x = 0$					
$1x^2 + y^2 = 4a$	and the lines $x = 0$					
$1x^2 + y^2 = 4a$	and the lines $x = 0$					
$4x^2 + y^2 = 4a$	and the lines $x = 0$					
$1x^2 + y^2 = 4x$	and the lines $x = 0$					
$dx^2 + y^2 = 4a$	and the lines $x = 0$					
$dx^2 + y^2 = 4a$	and the lines $x = 0$					
$dx^2 + y^2 = 4a$	and the lines $x = 0$					
$dx^2 + y^2 = 4a$	and the lines $x = 0$					
$4x^2 + y^2 = 4a$	and the lines $x = 0$					

mpie 3.	Evaluate $\int_0^1 \int$						
mple 6.	. Find the volu	ıme of the sol	id bounded by	the plane $z = 0$	and the parabo	$\text{ploid } z = 1 - x^2$	$x^2 - y^2$.
mple 6.	. Find the volu	ume of the sol	id bounded by	the plane $z = 0$	and the parabo	sloid $z = 1 - x^2$	$y^2 - y^2$.
mple 6.	. Find the volu	ime of the sol	id bounded by	the plane $z = 0$	and the parabo	$\text{bloid } z = 1 - x^2$	$x^2 - y^2$.
mple 6.	. Find the volu	ume of the sol	id bounded by	the plane $z = 0$	and the parabo	$\text{bloid } z = 1 - x^2$	$x^2 - y^2$.
mple 6.	. Find the volu	ime of the sol	id bounded by	the plane $z = 0$	and the parabo	soloid $z = 1 - x^2$	$x^2 - y^2$.
ample 6.	. Find the volu	ime of the sol	id bounded by	the plane $z = 0$	and the parabo	$\text{bloid } z = 1 - x^2$	$x^2 - y^2$.
ample 6.	. Find the volu	ume of the sol	id bounded by	the plane $z = 0$	and the parabo	sloid $z = 1 - x^2$	$x^2 - y^2$.
ample 6.	. Find the volu	ame of the sol	id bounded by	the plane $z = 0$	and the parabo	sloid $z = 1 - x^2$	$x^2 - y^2$.
ample 6.	. Find the volu	ume of the sol	id bounded by	the plane $z = 0$	and the parabo	ploid $z = 1 - x^2$	$x^2 - y^2$.
mple 6.	. Find the volu	ume of the sol	id bounded by	the plane $z = 0$	and the parabo	ploid $z = 1 - x^2$	$x^2 - y^2$.
ample 6.	. Find the volu	ume of the sol	id bounded by	the plane $z = 0$	and the parabo	ploid $z = 1 - x^2$	$x^2 - y^2$.
ample 6.	. Find the volu	ime of the sol	id bounded by	the plane $z = 0$	and the parabo	ploid $z = 1 - x^2$	$x^2 - y^2$.
ample 6.	. Find the volu	ime of the sol	id bounded by	the plane $z = 0$	and the parabo	ploid $z = 1 - x^2$	$x^2 - y^2$.
ample 6.	. Find the volu	ime of the sol	id bounded by	the plane $z = 0$	and the parabo	ploid $z = 1 - x^2$	$x^2 - y^2$.
ample 6.	. Find the volu	ame of the sol	id bounded by	the plane $z = 0$	and the parabo	ploid $z = 1 - x^2$	$x^2 - y^2$.